

LA-UR-19-24739

Approved for public release; distribution is unlimited.

Title: Gradient-Free Construction of Active Subspaces for Dimension Reduction

Author(s): Williams, Brian J.

Coleman, Kayla Smith, Ralph C. Morris, Max D.

Intended for: Archives

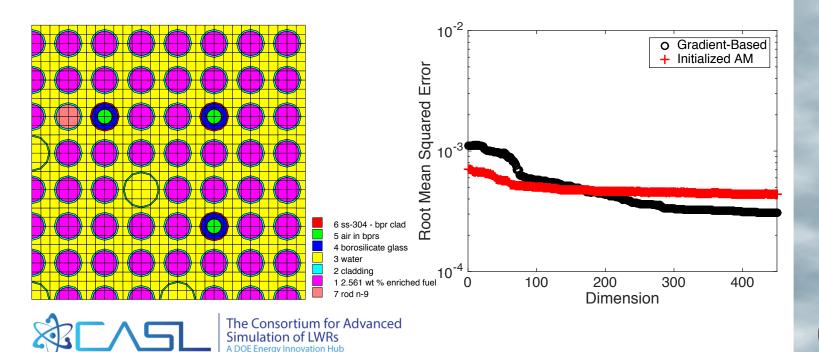
Issued: 2019-05-22

Gradient-Free Construction of Active Subspaces for Dimension Reduction

Brian J. Williams (LANL)

Kayla Coleman, Ralph C. Smith (NCSU)

Max Morris (ISU)



Abstract

Recent developments in the field of reduced order modeling - and in particular, active subspace construction - have made it possible to efficiently approximate complex models by constructing low-order response surfaces based upon a small subspace of the original high dimensional parameter space. These methods rely upon the fact that the response tends to vary more prominently in a few dominant directions defined by linear combinations of the original inputs, allowing for a rotation of the coordinate axis and a consequent transformation of the parameters. In this talk, we discuss a gradient free active subspace algorithm that is feasible for high dimensional parameter spaces where finite-difference techniques are impractical. We illustrate an initialized gradient-free active subspace algorithm for a neutronics example implemented with SCALE6.1, for input dimensions up to 7700.

Dimension Reduction

- The statistics community has been interested in dimension reduction methods for regression problems for 25+ years
 - Introduction of sliced inverse regression (SIR) and sliced average variance estimation (SAVE) in 1991
- Statistical formulation: Estimate the central subspace
 - Regress response Y = f(X) on a random m-vector of inputs X
 - Intersection of all subspaces S with the property that Y is conditionally independent of X given the projection of X onto S
 - Result is a set of n < m orthogonal linear combinations of X
- [Xia, Annals of Statistics 2007] introduced nonparametric methods to estimate S exhaustively
 - Compared performance to SIR, SAVE, principal Hessian direction (PHD), and minimum average variance estimation (MAVE)
- [Cook et al., JASA 2009] introduced a likelihood method for estimating S termed likelihood acquired directions (LAD)
 - Compared performance to SIR, SAVE, and directional regression (DR)
 - Assumes conditional normality but robust to non-normality
 - Likelihood ratio statistic, AIC, BIC used to choose n

Active Subspaces

Motivation:

- Some UQ problems involve high-dimensional input spaces that present challenges for standard surrogate and model calibration algorithms
 - e.g. 7700 cross section perturbations in a PWR quarter fuel lattice
 - 10k 100k+ parameters possible in CIPS Challenge Problem
- Typically sensitivity analysis would substantially reduce this dimension as most parameters have a relatively small influence on the Qols
- Popular active subspace methods seek to find a substantially reduced set of parameters formed as *linear combinations* of the original parameters
 - Conceptual similarities to statistical dimension reduction methods
 - If possible identify a set of 100 or fewer *active* parameters
- Use gradients to identify active parameters if they are produced by the code. Otherwise, gradient free approaches must be considered
 - Active area of research

Goal: Using a new gradient free algorithm for active subspace discovery, determine active parameters for use in surrogate construction and model calibration

Active Subspace Construction

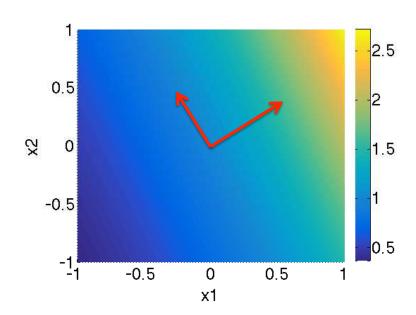
Note:

 Outputs may vary significantly in only a few "active" directions, which may be linear combinations of inputs.

Example:
$$y = \exp(0.7x_1 + 0.3x_2)$$

- Varies most in [0.7, 0.3] direction
- No variation in orthogonal direction

Strategy:



- Employ gradient-based or gradient-free techniques, in combination with SVD or QR to construct active subspace.
- Employ active subspaces for:
 - Linear Karhunen-Loeve expansion-based UQ
 - Surrogate or reduced-order model construction
 - Model calibration

Gradient-Based Active Subspace

Active Subspace: See [Constantine, SIAM 2015]. Consider

$$f = f(\mathbf{x}), \ \mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^m$$

and

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_m} \right]^T$$

Construct outer product

$$\mathbf{C} = \int (\nabla_x f) (\nabla_x f)^T \rho dx$$
 consists $\rho(x)$ is distribution of input x parameters

Partition eigenvalues: $\mathbf{C} = \mathbf{W} \Lambda \mathbf{W}^T$

$$\Lambda = \left[egin{array}{cc} \Lambda_1 & & \ & \Lambda_2 \end{array}
ight], \; \mathbf{W} = \left[\mathbf{W}_1 \; \mathbf{W}_2
ight]$$

Rotated Coordinates:

$$\mathbf{y} = \mathbf{W}_1^T \mathbf{x} \in \mathbb{R}^n$$
 and $\mathbf{z} = \mathbf{W}_2^T \mathbf{x} \in \mathbb{R}^{m-n}$

Motivation

Results:

Derivative of $f(\mathbf{x})$ in the direction \mathbf{w}_i

(1)
$$\lambda_i = \int \left(\sqrt[]{\nabla_{m{x}} f)^T m{w}_i} \right)^2
ho(m{x}) \, dm{x}$$

(2)
$$\int (\nabla_{\mathbf{z}} f)^T (\nabla_{\mathbf{z}} f) \rho(\mathbf{x}) d\mathbf{x} = \lambda_{n+1} + \dots + \lambda_m$$

- n can be chosen by looking for a "large" gap between λ_n and λ_{n+1} , such that $\lambda_{n+1} + \ldots + \lambda_m$ is relatively "small"
- (3) $f(\boldsymbol{x}) pprox g(\mathbf{W}_1^T\mathbf{x})$ g is a link function

Active and Central Subspaces

• Suppose $f(\mathbf{x})$ = $g(\mathbf{y})$ for $\mathbf{y} = \mathbf{W}_1^T \mathbf{x}$ $\pi(f(\mathbf{x}), \mathbf{x} | \mathbf{y}) = \pi(g(\mathbf{y}), \mathbf{x} | \mathbf{y})$ $= \pi(g(\mathbf{y}) | \mathbf{y}, \mathbf{x}) \pi(\mathbf{x} | \mathbf{y})$ $= \pi(g(\mathbf{y}) | \mathbf{y}) \pi(\mathbf{x} | \mathbf{y})$ $= \pi(f(\mathbf{x}) | \mathbf{y}) \pi(\mathbf{x} | \mathbf{y})$

 Inputs and output are therefore conditionally independent given the active variables, and so the active subspace defined by the columns of W₁ contains the central subspace

Estimation

Approximation via Monte Carlo:

- 1. Draw M samples $\{ \mathbf{x}_j \}$ independently from $\rho(\mathbf{x})$
- 2. For each \mathbf{x}_j , compute $\nabla_{\mathbf{x}} f_j = \nabla_{\mathbf{x}} f(\mathbf{x}_j)$
- 3. Approximate

$$\mathbf{C} \approx \hat{\mathbf{C}} = \frac{1}{M} \sum_{j=1}^{M} (\nabla_{\mathbf{x}} f_j) (\nabla_{\mathbf{x}} f_j)^T$$

4. Compute the eigendecomposition $\hat{\mathbf{C}} = \hat{\mathbf{W}} \hat{\Lambda} \hat{\mathbf{W}}^T$

Steps 3 and 4 equivalent to computing the SVD of the gradient matrix

$$\mathbf{G} = \frac{1}{\sqrt{M}} \left[\nabla_{\mathbf{x}} f_1 \cdots \nabla_{\mathbf{x}} f_M \right] = \hat{\mathbf{W}} \hat{\Lambda}^{1/2} \hat{\mathbf{V}}$$

Error in estimated active subspace:

$$\varepsilon = || \mathbf{W}_1 \mathbf{W}_1^T - \hat{\mathbf{W}}_1 \hat{\mathbf{W}}_1^T ||_2 = || \hat{\mathbf{W}}_1^T \mathbf{W}_2 ||_2$$

$$\varepsilon \leq \frac{4\lambda_1\delta}{\lambda_n-\lambda_{n+1}}$$
 δ is a user-specified tolerance for the eigenvalue estimates (used to choose M)

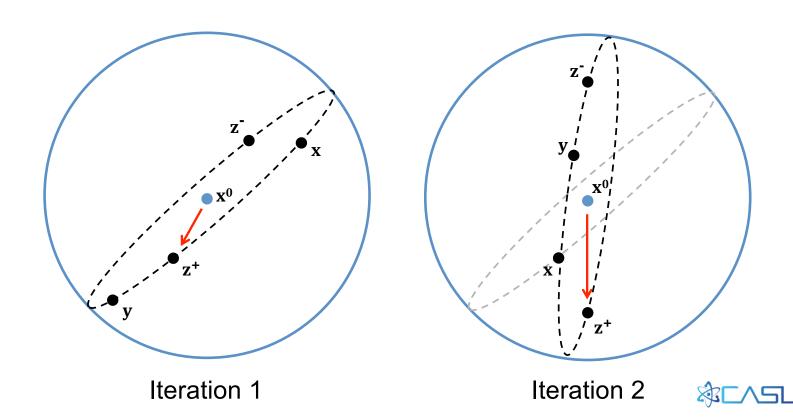
Order Determination

- 1. Gap-based
 - Stop at largest gap in eigenvalue spectrum
- 2. Error-based
 - Specify error tolerance ε_{tol} , **G** = **U** $\Lambda^{1/2}$ **V**^T
 - a) Draw a sequence of p standard Gaussian vectors { $\omega_1, ..., \omega_p$ }
 - b) Let $\mathbf{U}_{m \times j}$ be the first j columns of \mathbf{U}
 - c) Let $\varepsilon_{\mathrm{upp}}^j = 10\sqrt{2/\pi} \max_{i=1,...,p} ||(\mathbf{I} \tilde{\mathbf{U}}\tilde{\mathbf{U}}^T)\mathbf{G}\omega^i||$
 - Find smallest \emph{j} for which $arepsilon_{ ext{upp}}^{\jmath} < arepsilon_{ ext{tol}}$
 - Error bound holds with probability $1 10^{-p}$
- 3. PCA-based
 - Stop at minimal dimension yielding variance explained in covariance matrix formed from G exceeding user-specified threshold (e.g. 99%)
- 4. Response surface-based
 - Use the minimal dimension required to reduce response surface error on a validation dataset below a user-specified threshold (e.g. 0.01, 0.001)

Goal: Determine dimension of active subspace

Gradient Approximation for Large Input Spaces

- Utilized when finite difference approach to gradient approximation is computationally prohibitive; e.g., SCALE6.1 with 7700 inputs.
- Construct ellipsoid where linearity is reasonable assumption.
- Maximize function values and gradient information using "great ellipsoid" relations.



"Great Ellipsoid" Solution

 Consider a matrix C collecting h+1 input samples from the surface of the unit hypersphere:

$$oldsymbol{C} = egin{bmatrix} oldsymbol{w} & oldsymbol{v}_1 & \cdots & oldsymbol{v}_h \end{bmatrix}$$

Collect the sampled output differences into a vector y:

$$\mathbf{y} = \begin{bmatrix} g(\mathbf{w}) - g(\mathbf{0}) & g(\mathbf{v}_1) - g(\mathbf{0}) & \cdots & g(\mathbf{v}_h) - g(\mathbf{0}) \end{bmatrix}^T$$

The direction of steepest ascent within the column space of C is given by:

$$oldsymbol{u}_{ ext{max}} = rac{oldsymbol{C} \left(oldsymbol{C}^T oldsymbol{C}
ight)^- oldsymbol{y}}{\sqrt{oldsymbol{y}^T \left(oldsymbol{C}^T oldsymbol{C}
ight)^- oldsymbol{y}}}$$

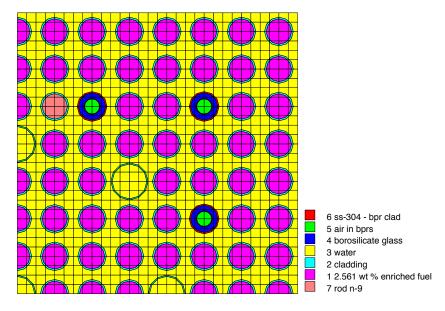
SCALE6.1: High-Dimensional Example

Setup:

Input Dimension: 7700

• Output k_{eff}

N		als	Reactions			
²³⁴ U	$^{10}_{5}{ m B}$	³¹ ₁₅ P	Σ_t	$n \rightarrow \gamma$		
$^{235}_{92}U$	$^{11}_{5}{ m B}$	$_{25}^{55}\mathrm{Mn}$	Σ_e	$n \to p$		
$^{236}_{92}U$	$^{14}_{7}{ m N}$	$_{26}$ Fe	\sum_f	$n \to d$		
$^{238}_{92}U$	$^{15}_{7}{ m N}$	$^{116}_{50}{ m Sn}$	\sum_{c}	$n \to t$		
$^{1}_{1}\mathrm{H}$	$^{23}_{11}$ Na	$^{120}_{50}{ m Sn}$	$ar{ u}$	$n \to {}^{3}{\rm He}$		
¹⁶ O	$^{27}_{13}$ Al	$_{40}\mathrm{Zr}$	χ	$n \to \alpha$		
$_{6}$ C	$_{14}\mathrm{Si}$	$_{19}$ K	$n \to n'$	$n \to 2n$		



PWR Quarter Fuel Lattice

Note: We cannot efficiently approximate all directional derivatives required to approximate the gradient matrix. Requires an efficient gradient approximation algorithm.

The Consortium for Advanced

SCALE6.1: High-Dimensional Example

Setup:

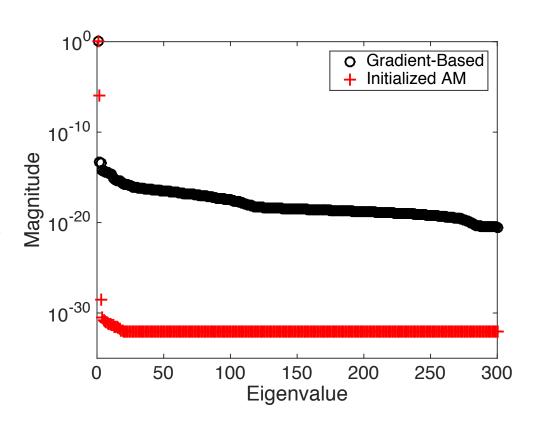
Input Dimension: 7700

SCALE Evaluations:

Gradient-Based: 1000

 Initialized Adaptive Morris: 18,392 (0.20%)

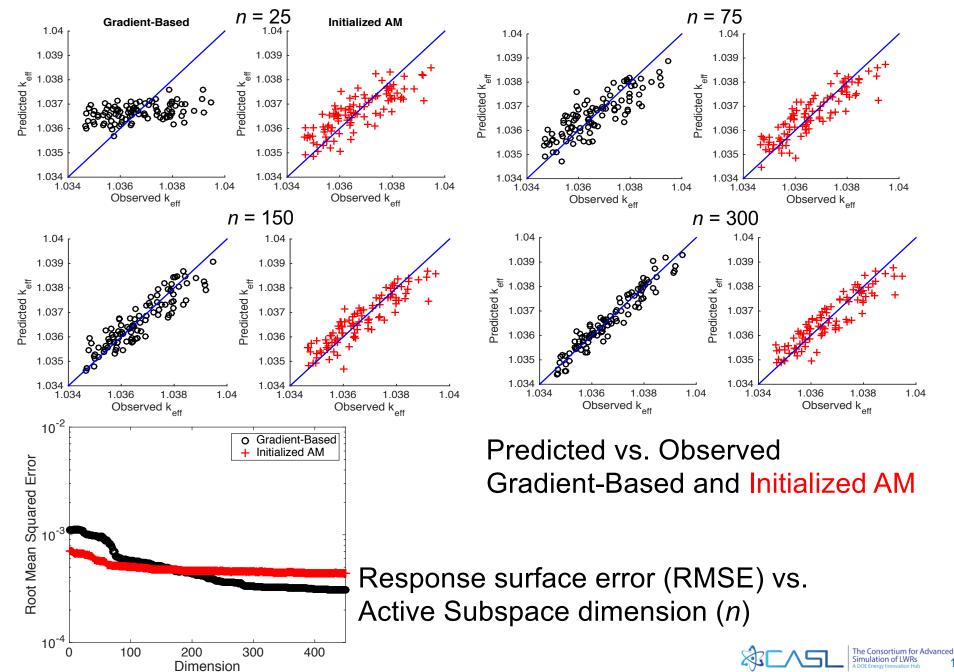
Projected Finite-Difference: 7,701,000



Active Subspace Dimensions:

	Gap	PCA				Error Tolerance			
Method		0.75	0.90	0.95	0.99	10^{-3}	10^{-4}	10^{-5}	10^{-6}
Gradient-Based	1	2	6	9	24	1	13	90	233
Initialized AM	1	1	1	1	2	1	2	2	2

SCALE6.1: High-Dimensional Example



Improved Gradient Approximation

- Can the function evaluations utilized for gradient approximation be selected more efficiently?
- At iteration i, the direction of steepest ascent within a randomly determined subspace M_i (which also contains the direction of steepest ascent from iteration i – 1 for i > 1) is determined
- For the assumed linear approximation, at iteration i the function does not vary in the orthocomplement O_i in M_i of the direction of steepest ascent
- At iteration i, define a subspace S_i spanned by the accumulated orthocomplements from previous iterations (S_i = span{ $O_1, ..., O_{i-1}$ }), and ensure the subspace M_i in which the steepest ascent direction is to be found is restricted to the orthocomplement of S_i
- At most d iterations required to converge to the gradient:

$$\sum_{i=1}^{d} \dim(M_i) = m + d - 1$$

Quality of Gradient Approximation

 Consider a k-dimensional subspace defined by the column space of a matrix M in which the gradient is currently approximated by z⁺. It can be shown that

$$oldsymbol{z}^{+} = rac{oldsymbol{P_{M}}\left(
abla_{oldsymbol{x}}f
ight)}{||oldsymbol{P_{M}}\left(
abla_{oldsymbol{x}}f
ight)||}$$

 We assume the unknown normalized gradient vector z is uniformly distributed on the unit sphere, and consider the distribution of the cosine of the angle between the random quantities z and z+:

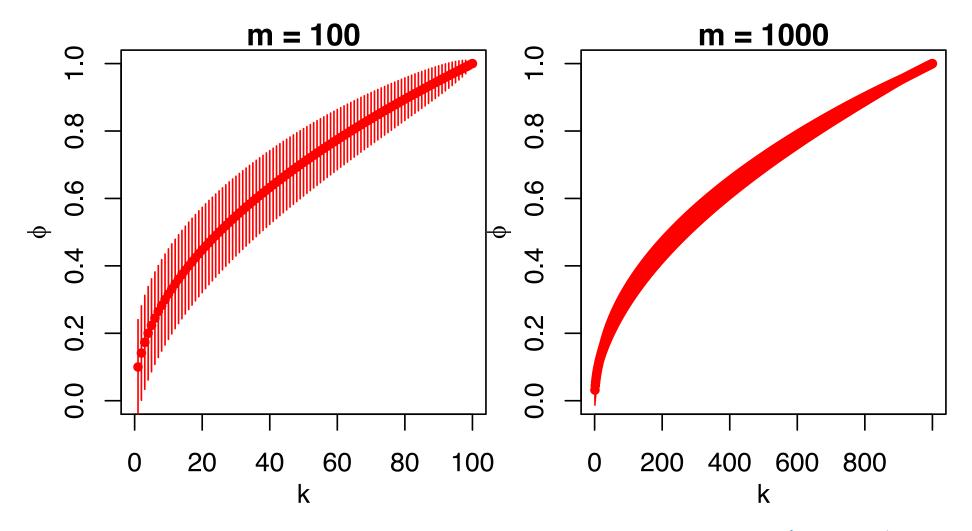
$$\phi = \sqrt{rac{oldsymbol{z}^T oldsymbol{P_M} oldsymbol{z}}{oldsymbol{z}^T oldsymbol{z}}} \,,\, oldsymbol{z} \sim N_m(oldsymbol{0}, oldsymbol{I}_m)$$

• The mean and standard deviation of ϕ are approximated as follows:

$$E[\phi] \approx \sqrt{\frac{k}{m}}, SD[\phi] \approx \frac{1}{m} \sqrt{\frac{m-k}{2}}$$

Quality of Gradient Approximation

Uncertainty in error decreases with increasing input dimension



Elliptic PDE: Moderate-Dimensional Example

Consider the following equation:

$$-\nabla_{\boldsymbol{s}} \cdot (a(\boldsymbol{s}, \boldsymbol{x})\nabla_{\boldsymbol{s}}u(\boldsymbol{s}, a(\boldsymbol{s}, \boldsymbol{x}))) = 1, \, \boldsymbol{s} \in [0, 1]^2$$

- Boundary conditions: u = 0 (left, top, bottom); $\frac{\partial u}{\partial s_1} = 0$ on right (Γ_2)
- $a(\mathbf{s}, \mathbf{x})$ is taken to be a log-Gaussian second-order random field (m = 100):

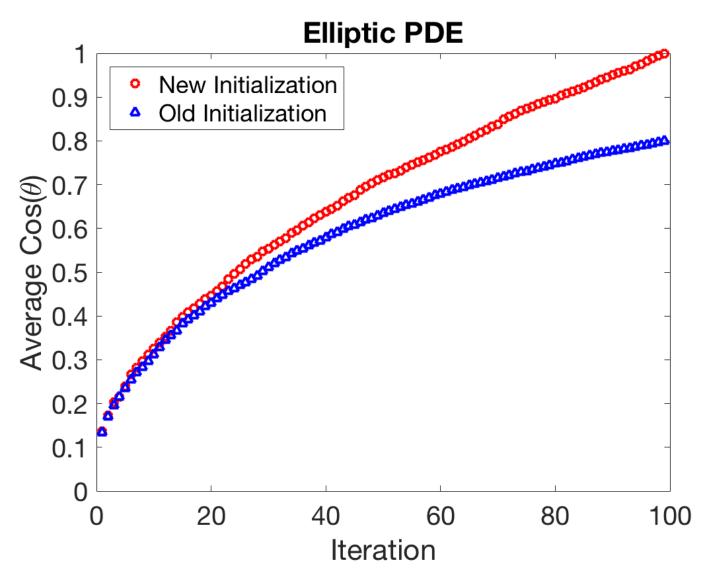
$$\log(a(\boldsymbol{s}, \boldsymbol{x})) = \sum_{i=1} x_i \sqrt{\gamma_i} \, \phi_i(\boldsymbol{s})$$

Response of interest:

$$f(\boldsymbol{x}) = \frac{1}{|\Gamma_2|} \int_{\Gamma_2} u(\boldsymbol{s}, \boldsymbol{x}) d\boldsymbol{s}$$

• Standard finite element method used to discretize this elliptic problem, producing $f(\mathbf{x})$ and the adjoint-computed $\nabla_{\mathbf{x}} f(\mathbf{x})$

Elliptic PDE: Moderate-Dimensional Example



SCALE6.1: Moderate-Dimensional Example

Setup:

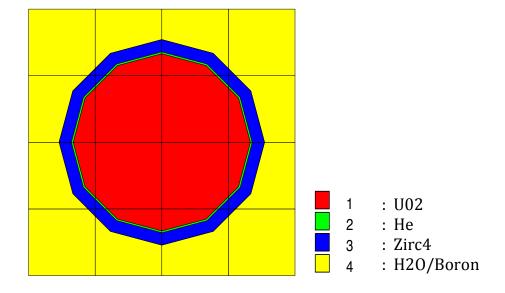
• Material: U_{92}^{235}

• Cross-sections: $\Sigma_f(E)$

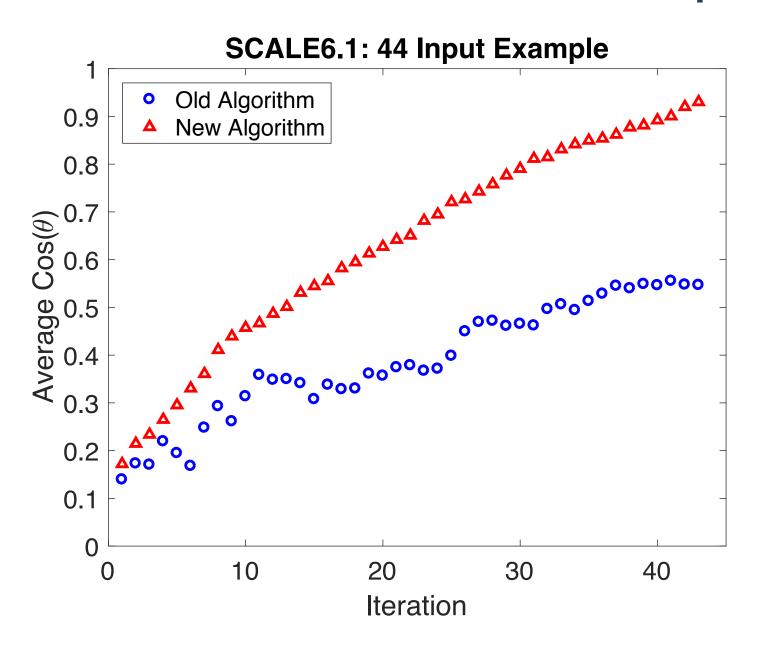
Energy groups: 44

Total input dimension: 44

• Output: k_{eff}



SCALE6.1: Moderate-Dimensional Example



Gradient-Free Active Subspaces

Observations:

- If available, use gradient information to identify active subspaces.
- Many legacy codes do not calculate gradients. In these cases, gradientfree active subspace discovery is required.
- For complex codes, strategies required to reduce computational effort.

Papers:

- A. Lewis, R.C. Smith and B. Williams (2016), "Gradient free active subspace construction using Morris screening elementary effects," *Computers and Mathematics with Applications*, 72(6), 1603-1615.
- K.D. Coleman, A. Lewis, R.C. Smith, B. Williams, M. Morris and B. Khuwaileh (2019), "Gradient-free construction of active subspaces for dimension reduction in complex models with applications to neutronics," SIAM/ASA Journal on Uncertainty Quantification, 7(1), 117-142.

Present and Future Work:

- Integrate gradient approximation algorithm into Sandia's Dakota software.
- Continued investigation of response surfaces constructed from active parameters in Bayesian model calibration applications.